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CHAPTER 1: INTRODUCTION 

 

 

 In many parts of the world, consumers have shown increasing interest in the 

provenance of their purchases.  Where do the things we purchase come from?  How are 

they made?  How do those products and processes impact the natural environment that 

surrounds us?  As people have become increasingly aware of the sustainability challenges 

that our world now faces, many have wondered if the things that we enjoy today could be 

made or put together in a more sustainable way.   

 The ideas for this dissertation work grew from that same motivation.  Of course, 

the field of sustainable supply chain management had already decades earlier been 

founded.  But, its development, as of 2014, is understandably incomplete.   In my 

reading, and in others’, the nascent field of sustainable supply chain management 

currently lacks operational principles.  Not unlike the motivating consumer’s problem, a 

supply chain practitioner or researcher interested in doing sustainability work is still left 

to ask: How do I design a sustainable supply chain? 

 This dissertation begins by taking a cue from the natural environment.  Driving 

between towns in Iowa, past corn field after corn field, I couldn’t help but think about 

how long we’ve been unwittingly designing our supply chains the way that we do, by 

growing one crop (corn) at the exclusion of others – and how much different our 

approach is to supply chain design than what one would observe in a natural ecosystem, 

like a prairie, or a jungle.   At the time, I simply drove on, assuming that we grow corn 
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almost exclusively because that’s just cheapest way to do it— and because we thought up 

this unwitting supply chain design long before anyone really cared about sustainability. 

 But, could that really be true?  Are single-input systems really the cheapest way to 

do it?   If supply chain management is, in large part, the study of the flow of resources 

and information between firms; and ecology is, in large part, the study of the flow of 

energy and nutrients between communities of living things, then might one inform the 

other?  Moreover, with such similar conceptual frameworks, I began to doubt that 

ecologically evolved systems like prairie and jungles would really be poorer stewards of 

monetary and natural resources than the single-input, inflexible supply chains that we 

typically design. 

 This dissertation begins at this conceptual level.  By way of an agricultural 

analogy, chapter two first offers basic ecological reasons to be interested in multi-input 

systems that more closely resemble natural systems.  This ecological diversity is then tied 

to the operations research literature’s notion of manufacturing flexibility, and the 

beginning agricultural analogy is used to illustrate similar dynamics across a variety of 

other processing industries. From there, we offer the three reasons that this dissertation 

project envisions multiple input-systems sometimes outperforming single input in terms 

of logistical costs.   

 Chapter three begins empirical testing of these ideas in a bioeconomy context.  A 

simulation model was crafted with parameters drawn from real world applications in 

Iowa, USA.  We then tested for the resulting costs when one, two or three crops are used 

as feedstock.  Tests were done under a variety of circumstances, to see when, and if, more 

diverse, flexible systems were in fact, cost-effective. 
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 Chapter four takes the idea further, to consider how independent, profit-

maximizing actors would interact in a diverse/flexible environment.  This necessitated 

proposing new ways to model flexibility interacting across firms, which we do by 

employing elements of Game Theory and shadow pricing to two inter-linked linear 

programs.   
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CHAPTER 2: DIVERSITY AND FLEXIBILITY AS DESIGN PRINCIPLES FOR 

SUSTAINABLE SUPPLY CHAIN MANAGEMENT 

 

A paper to be submitted to the Journal of Cleaner Production 

David Correll1, Yoshinori Suzuki2, Bobby J. Martens2 

 

Abstract 

Supply chain management and logistics researchers face a new challenge.  In 

addition to designing supply chains that reduce cost and increase agility, recently, we 

have also been asked to design systems that also lower a product’s environmental burden.   

To-date, supply chain designers have approached this challenge with scant new design 

principles specific to the task.  This paper endeavors to start filling sustainable supply 

chain designer’s operational toolbox.  Specifically, by bridging recent developments in 

the fields of ecology and operations research, we elucidate a design principle that we call 

‘diversity/flexibility’ and conceptually argue its place as a beginning principle of design 

in sustainable supply chain management for natural resources.   

 

1. Introduction and Review 

Calls for considering the environmental burden of supply chain design come from 

myriad motivations.  First, and most imminently practical, 20% of world energy 

consumption owes to transportation (Halldórsson and Kovács, 2010), and another 70% to 
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advanced manufacturing   (Mulhall and Bryson, 2014).  As oil and gas resources around 

the world continue to rise in price and in volatility, the researchers and field logisticians 

who design supply chains have taken note.  In their 2010 Delphi-method based 

forecasting project, von der Gracht and Darkow found that both researchers and 

practitioners identified “the problem of energy supply” as the highest probability scenario 

of 41 projected problems that will beset the logistics industry in 2025 (2010).   

There are other more broad-based reasons too. Lieb and Lieb have suggested that 

their survey of logistics CEOs reveals five key reasons that logistical firms think about 

the sustainability of their supply chains: “desire to do the right thing; pressure from 

customers; desire to enhance company image; desire to attract green customers; and 

competitive pressures” (2010).  To this list, Dey, LaGuardia and Srinivasan have added:  

“brand value; misuse of resources; government intervention; and international standards 

and regulations” (2011).  The management literature has also reminded us that 

sustainability can be pursued proactively too, as an effective motivator for operational 

innovation (Nidumolu et al., 2009; Shrivastava, 1995).    

Ultimately, then, because all supply chains trace back to the natural resources that 

sustain them, sustainable supply chain managers see threats to the abundance and/or 

quality of these critical natural resources as— at least—  deserving of their attention.  

But, how do supply chain designers heed this call?  What are the design principles of 

sustainable chain management?  The literature is awash in papers key-worded to 

sustainability.  [Recent reviews can be found in: (Ashby et al., 2012; Carter and Rogers, 

2008; Dey et al., 2011; Halldórsson and Kovács, 2010; Hassini et al., 2012; Linton et al., 

2007; Winter and Knemeyer, 2013)   But, in some opinions (discussed below), actionable 
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principles specific to the designing of sustainable supply chains are still lacking.  This 

paper draws on research from both operations research and ecology to argue for the first 

time that ‘diversity/flexibility’ stands to become among the first basic principles of 

design for sustainable supply chain management.    

1.2 What is sustainable supply chain management? 

To-date, the most widely-cited recent definition of sustainable supply chain 

management (SSCM) in the research literature comes from  Carter and Rogers (2008), 

who synthesized extant ideas and research to define it as, “the strategic, transparent 

integration and achievement of an organization’s social, environmental, and economic 

goals in the systemic coordination of key interorganizational business process for 

improving the long-term economic performance of the individual company and its supply 

chains.”  This definition, and the many authors who have subsequently employed it, then 

embrace a dauntingly holistic view of sustainability, suggesting that it encompasses the 

entire supply chain’s impact on society, the natural environment, and firm profitability.  

While seemingly overwhelming, this wide-lens definition of SSCM is largely in line with 

the most famous original definition of general sustainability, the 1987 Brundtland 

Commission’s report, which called it, “development that meets the needs of the present 

without compromising the ability of future generations to meet their needs.” (World 

Commission On Environment and Development, 1987).     SSCM research along these 

lines has grown dramatically over last ten to fifteen years (Linton et al., 2007); and has 

recently progressed from the classic phases of theory development, [review in  (Carter 

and Rogers, 2008)];  to measure development [review in (Hassini et al., 2012)]; and even 

new types of supply chain model building [e.g. (Chaabane et al., 2012).    
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But, in the past half decade, a concurrent clamor for more narrowly focused 

logistical attention to SSCM suggests that certain ground-level operational insights are 

lacking.  As examples: in their review of SSCM, Winter and Knemeyer (2013) point out 

that operational model building is the least represented methodology in sustainable 

supply chain research;  Halldórsson and Kovács suggest that all this theory development 

has left basic questions about distribution strategies and batch-sizing appropriate to 

sustainable supply chain management un-answered (2010); and Hassini, Surti and Searcy 

(2012) point out in the conclusion of their review of sustainable supply chain 

management that matters of pricing between trading partners and inventory management 

in sustainable supply chain systems have yet to be sufficiently addressed.  

Operational questions such as these can be described as ‘principles’ of sustainable 

supply chain management.  Unlike more heavily researched features of wide-lens 

sustainable supply chain management —like cultural antecedents, theoretical linkages, or 

relationships to firm profitability —  the basic how-to’s of designing sustainable supply 

chains in specific contexts are a lesser explored territory.  In the section that follows, we 

suggest one new principle, diversity/flexibility, and elucidate its origins and function.  

2.  Narrow lens SSCM: Biodiversity and the Natural Environment 

If, as the review above suggests, one tenant of sustainable supply chain 

management is environmental stewardship, then design of a sustainable supply chain’s 

input systems ought to reflect that goal.  This, of course, requires that, for now, we 

willingly train our focus on to only the environmental dimension of Carter and Roger’s 

definition.  We suggest that this narrowing be entertained for two reasons: (1) it allows us 

to begin to fill in the absence of on-the-ground, tactical supply chain design principles in 
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SSCM; and (2) it could be argued that protecting the health and abundance of the natural 

resources that ultimately feed a supply chain is itself of benefit to both the societies, and 

the firms that surround it.   

Herein, we begin by summarizing insights on sustainable supply chain 

management drawn from the natural world: the benefits of biodiversity.  Evidence of the 

long-term sustainability benefits of biodiversity abound in the natural world.  Natural 

ecosystems like prairies, rainforests, and jungles have all continued themselves for 

generations through the cycling and recycling of abundant and balanced communities of 

diverse plant and animal life.  Particularly in the context of industries whose supply 

chains start in the soil (consider agriculture as a prototype illustration), the mechanisms 

of biodiversity can clearly begin to inform our supply chain design.   But, if we start 

there, we can go further.  Building on ecological and agronomic illustrations, we can 

meaningfully address design principles for the interface of environmental stewardship 

and supply chain management across the many industries whose supply chains ultimately 

source back to raw materials and the natural world.   (A complete treatment of ecological 

diversity is beyond the scope of this paper; but, below we will summarize key 

mechanisms motivating our research and provide references for further reading. 

Nutrient Recycling and Environmental Quality 

• Different plant types give and take different qualities from the soil in 

which they grow.  Growing only one plant year after year deprives the soil 

of the opportunity to restore its health and fertility; while growing a 

diversity of crops allows soil nutrients to replenish naturally in a process 

known as “biotic regulation”.  Without diversity, soil nutrients must be 
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maintained by chemical fertilizers, which have been known to leak into 

ground water, rivers and oceans, upsetting the delectate balance of life in 

those systems.  [See: (Gliessman, 1998; Pimentel et al., 1997)]  

Natural Pest Control and Environmental Quality 

• Every plant type is preyed upon by its own community of noxious and 

lethal pests.  In single input systems, management of these pests is 

achieved by chemical treatments that can also end up in surrounding 

waterways.  However, decades of research shows that the addition of more 

crops to a landscape – even incrementally across both space and time – 

reduces pest pressure and therefore the need for toxic chemical inputs.  

[For reviews see: (Altieri, 1993; Gliessman, 1998)] 

Natural Resiliency 

• Ongoing science suggests that a combination of the two effects above, and 

others, lead to an intuitive result: the “diversity-stability hypothesis”, 

which posits that, ceterus peribus, systems showing a greater variety of 

plant types recover more effectively from shocks like weather anomalies 

and toxic events than do less diverse systems, saving the community and 

the environment at least some of the monetary and environmental costs of 

remediation [See: (Johnson et al., 1996; Tillman and Downing, 1994)] 
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Resource Conservation 

• Studies that compare production agriculture systems where a diversity of 

crops is employed against a single crop show the many natural efficiencies 

of more bio-diverse systems.  Diverse cropping systems have been shown 

to reduce water use, reduce soil erosion, and reduce CO2 emissions of 

agricultural production systems in field studies.  [See: (Groom et al., 2007; 

Perlack et al., 2005; Tillman et al., 2006; Williams et al., 2009).]    

2.1 From biodiversity to manufacturing flexibility 

 So, if a sustainable supply chain designer accepts that biodiversity can beget 

sustainability in a system, how does she begin to implement it?  Firstly, what are the 

conceptual tools from the existing literature that can bridge ecology into her toolbox?  

And, second, might there be any reason for sustainable supply chain managers to believe 

that biodiversity might also confer some cost-saving logistical advantages?  Profitability 

is, after all, another dimension of Carter and Roger’s definition.  

 In the operations research literature, the term that describes a system’s ability to 

produce multiple outputs is product flexibility. Product flexibility, has been defined as 

“The ability to changeover to produce a new (set of) product(s) very economically and 

quickly (Beach et al. 2000; Browne et al. 1984).  Consider in this regard then the bio-

diverse ecosystems described above (natural prairies, rainforests, and jungles) to be 

product flexible. Their inherent design and infrastructure allow them to output a wide 

abundance of plant and animal life.   

 But, from the sustainable supply chain manager’s perspective, a natural 

environment’s product flexibility is only useful so long as we can make something of that 
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array of products.  A similar term in the operations research literature is process 

flexibility.  Process flexibility has been defined as, “The ability to produce a given set of 

part types, each possibly using different materials in several ways” (Beach et al., 2000; 

Browne et al., 1984).   Consider first then as a beginning illustration the industries 

described above that draw their feedstock straight from the soil (agriculture, textiles and 

biorenewables) to be, in some cases, product flexible.  Food, as a source of nutrients and 

energy certainly is so.  Some textiles can be made from blends of different plant types by 

mixing standard cotton-twill denim, as one example, with also hemp and recycled fibers.  

In bioenergy, conversion technologies like fast pyrolysis have shown the ability to output 

energy and liquid fuels with a huge variety of different plant-based feedstock (Correll, 

2009).   

� 
���
��������

*��+�,�����

�����

�*��+�,����� ��������*��+�,�����

 

 

Figure 1:  Manufacturing Flexibility, Product Flexibility and Process Flexibility 
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 Both product and process flexibility are sub-sets of a bigger operational concept 

known as manufacturing flexibility (see figure 1).  Sethi and Sethi broadly define 

manufacturing flexibility as “… adaptability to a wide range of possible environments 

that it [the system] may encounter.  A flexible system must be capable of changing in 

order to deal with a changing environment” (Sethi and Sethi, 1990).   Interestingly, 

manufacturing flexibility stemmed from a different motivation than the environmental 

stewardship and sustainability models that we suggest herein.   Since its inception in the 

operations research literature in the 1960s, the concept of manufacturing flexibility and 

its resulting mathematical models have been employed exclusively in efforts to avoid 

production costs owing to demand uncertainty ( For reviews see (Beach et al., 2000; Fine 

and Freund, 1990; Karsak and Kuzgunkaya, 2002; Sethi and Sethi, 1990)).   From this 

motivation, a wide variety of other industries have pursued process flexibility.  Consider: 

electricity generation, which seeks to meet quickly shifting demand through mixes of 

fossil fuel combustion, renewable fuel combustion, wind, and solar power; Petroleum, 

which uses advanced linear programs to process different grades of crude oil from 

disparate parts of the world into a standard slate of products; Cement production, which 

recent research shows cost and environmental benefits from inputting mixes of different 

heating fuels and raw materials; and metal alloys, where process flexibility models have 

been recently employed to optimize mixes of different input ores for cost. In the next 

section we will contribute both to these literature streams, and to developing the 

operational toolbox of SSCM, by outlining the new propositions of ‘diversity/flexibility’ 

in sustainable supply chain design.  
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3. Diversity/Flexibility and Logistical Costs 

Herein we offer three conceptual propositions to argue that, in addition to 

protecting the natural environment, diversity/flexibility stands to reduce logistical costs in 

product-and-process flexible supply chains.  Each proposition is elucidated by algebraic 

statement (lemma) and then brief mathematical proof.  

Preliminaries 

Consider first, as an illustrative example, any enterprise such as those discussed 

above, that is process flexible to inputs in a product flexible supply environment.   To 

begin, consider agriculture, textiles and biorenewables, where the firm’s core function is 

to convert plant material into a product.  Keep in mind two facts about plants:  (1) they 

live and die (or lie dormant) in seasonal cycles affected by their surrounding weather; and 

(2)  they need to be collected in some time window that begins when they are available 

for harvest (or, are “ripe”), and that ends before they spoil in the field.  Let � be a set of 

days included a time horizon of one year (i.e.  � = [1,2,3…364,A]), where A is typically 

365.   Let a single crop’s annual harvest window, be given by set α � �, where 

cardinality is a � A days (i.e.  |α|=a).      Similarly, a second crop’s annual harvest 

window can be given by set β � �, where cardinality is b � A (i.e. |β| = b).   

Now widen the lens to consider other analogous examples, electricity generation, 

petroleum products, concrete production and metal alloys, just to name a few.  While the 

mix of inputs for these industries are not as obviously seasonal in their availability as are 

plants; plants are nevertheless illustrative. Inputs to each of these additional industries 

feature seasonal price fluctuations that make them more desirable during certain times of 

the year, owing to any combination of production cycles, demand cycles, and/or seasonal 
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shipment costs.  Moreover, each material must be either collected by the processing firm 

or its paid agent, not unlike the prototypical agricultural example.   Consider then these 

opportune price points analogous to a plant’s “harvest season”.  Similarly, then let � 

represent any reasonable planning horizon, and have a length of A elements, numbered 1 

to A (i.e.  � = [1,2,3…A]).   Let a single input’s opportunity window, be given by set α � 

�, where cardinality is a � A days (i.e.  |α|=a), and a second input’s annual opportunity 

window be given by set β � �, where cardinality is b � A (i.e. |β| = b).  See figure 2. 

�

ΓΓΓΓ ∆∆∆∆

αααα ββββ

 

Figure 2:  Sets for lemmas One through Three 

Capacity utilization 

How are the collection machines (like pickers, combines, balers, barges, trucks 

and mixers) deployed in this illustration system?  Basically, the machines go out and 

collect all the required inputs during that input’s opportune collection time (By analogy: 

during the harvest window).  If the industry under consideration uses one input type as 
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feedstock, (say cotton for denim in the American southwest, China, or India; or coal for 

electricity generation all over the world), the machines go out and collect all the firm’s 

required cotton or coal during the input’s opportunity window in that area – the same 

would be true in application to sugarcane for ethanol in Brazil, or limestone for cement 

production globally.  In practicality then, over the course of one year, the machines work 

only during the subset of that year that is the single input’s opportunity window.  A 

standard measure of annual utilization would then be the fraction of time that the machine 

is not idle (Hopp, 2008), and could be given as be U1= ��.   Now, imagine process and 

product flexibility interacting — that is, that you could make your denim out of cotton 

and a second crop, like hemp; your ethanol out of mixes of sugarcane and miscanthus; 

your cement from virgin limestone and recycled tires.  The same standard measure of 

capacity utilization would now be written as U2 = �������	
��	��
� , or the opportunity 

window of the first input, plus the opportunity window of the second input, minus those 

days common to both sets.  Assuming all non-negative values, and β � α, (the 

opportunity window of the second input is not entirely contained in the set of the first), 

then algebraically, the utilization of the latter system has to be higher.   Lemma one puts 

this first operational benefit of diversity/flexibility into simple algebraic logic: 

Lemma 1:  If A,a,b > 0 and β � α, then the utilization of a multi-input system U2 will be 

higher than of a single input system, U1. 

Proof:   Since β � α, we have a < a+b - |���|, so that   ��  � ������	���	��� .  Because A,a,b > 

0 ,  this implies that U1 < U2.  � 
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Proposition 1:  Diversity/Flexibility begets higher capacity utilization and thereby lower 

logistical costs 

Capacity utilization impacts cost in our example firm in the following way.  

Imagine that a fixed quantity of the required input needs to be covered by these collection 

machines in one year in order to amass enough material to keep the firm running for the 

year.  Of course, that material must be collected during its opportunity window.  Given 

that each machine can only work, in the single input case, ���)% of the year,  lower-

capacity-utilization, single opportunity window systems  can demand that multiple 

collection machines be purchased in order to cover the entire required area within the 

single specified time window.  When diversity/flexibility is added to the system, capacity 

utilization of a single machine is, per Lemma 1, necessarily increased, because a single 

machine can now work ������	
��	��� 
% of the year, meaning that, in some cases, fewer 

machines need to be purchased, thereby lowering the fixed costs of logistical systems.    

However, this algebraic representation leads to an important logical condition 

when thinking about applying the diversity/flexibility principle.  As α and β can be 

thought of as days in a year, they are necessarily subsets of �.  In that case, Proposition 1 

holds only as long as  α � β (every member of α is not also included in β).  By 

agricultural analogy, this essentially means that Proposition 1 holds only as long as 

adding crops extends the harvest window (Or, put differently, as long the opportunity 

window of the additional input is not entirely contained within the first.)  

Inventory cost 

Revisit our preliminary model at the beginning of the process flexible supply 

chain.  Keeping in mind that, during the course of a year, measured by A, in a single input 
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system, all inbound material comes in during a days (the length of the opportunity 

window, measured in days), meaning that for a number of days (A – a), feedstock must 

be drawn from stored inventory in order to keep the firm running.  Let daily demand for 

inputs be measured in tons and be given by d.   Then the minimum amount of feedstock 

necessary to ensure year-round operation (assuming no external feedstock sources are 

available) could be given by Inv1= ��� � ��)d.  What then of adding that second input?  

Inbound material would then be coming in during both α and β, meaning that minimum 

inventory must be Inv2 = ��� � �����	���	��� )d.  Removing the constants, we can see 

Proposition 2 algebraically: 

 

Lemma 2:  If A,a,b > 0 and β � α, then, the required  inventory of a multi-input system, 

Inv2, will be smaller than that of a single input system, Inv1. 

Proof:  Since β � α, we have  - a � -(a + b - |���|), so that, �� � ��) � �� � �����	
��	��� ). 

Because A,a,b > 0 this implies that Inv1 > Inv2. � 

 

Proposition 2:  Diversity/Flexibility begets smaller required inventories and warehousing 

Essentially, more days of inbound material means less days need to draw 

feedstock from stored inventory.  Smaller total inventory size affects logistical costs in 

the following way:  When considering the minimum amount of feedstock necessary to 

hold on-site in inventory, we are, in essence, considering the required physical space of 

our inventory facility.  Larger facilities beget larger upfront costs in land, construction 

materials, and sometimes operational costs than do smaller ones.  Accordingly, 

Proposition 2 suggests then that there are logistical costs savings to be captured through 
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diversity/flexibility.   With inbound material coming in during more days of the year, the 

required size of an inventory facility necessarily shrinks.   Of course, condition 2 again 

provides that Lemma 2 only holds true when  β � α, meaning that the opportunity 

windows of the two inputs have to be in some way temporally different.        

Transportation and land use 

Consider now a slightly more involved situation, where the two inputs’ whole life 

cycles (not just opportunity windows) can be represented by two sets of days which are, 

again, members of the set of all the days in year, �.  Let the subset of those days that 

encompass the entire lifetime of two inputs be ∆ and Γ.  The amount of land needed for 

our (denim, ethanol, sweetener, coal mining, wind farming, solar collection…etc) 

operation could be given by, obviously, the number of hectares needed to collect a year’s 

worth of feedstock, given that input’s expected yield over space.  Let yield of the first 

input be Y1 per hectare, and the second Y2. Therefore the land area required of a single 

input system would be given by Area1 = ���� .   But, what if two inputs are available on the 

same area of land?  Then what happens to the land requirement?  We will find results for 

the upper and lower bound.  In the condition where Γ �∆= �  (the lifetime of the inputs 

do not intersect at all over the course of one year, so their intersection is an empty set), 

we can easily see that Area2 = �������. 
 

Lemma 3a:  If A,d,Y1,Y2 > 0 and  Γ �∆ = � , then the area required for a single input 

system Area1 will be larger than that for a multi-input system, Area2.   
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Proof:  Since Γ �∆ = �, we have Area1 = ����   and Area2 = �������.   Because A,d,Y1,Y2  > 0, 

it follows that Area1 > Area2. � 

 

 But now, consider the more complicated situation wherein the two inputs have 

overlapping lifetimes (i.e.  Γ�∆ � � ).  In this case, can logistical – and particularly 

transportation – efficiencies still be gained?  Imagine a single unit of land (say, a hectare) 

divided in to portions for two inputs.  Each input then is given a weight (w1, w2) 

corresponding to the percentage of the land area that it occupies, such that w1 + w2 = 1.   

In this case, area of the two input system would be Area2 = �����������.  In such a case, the 

inequality holds only under its own telling condition, Y2 > Y1.   

 

Lemma 3b:  If A,d,Y1,Y2> 0, Γ�∆� �,  w1 + w2 = 1, and Y2 > Y1, the area required for a 

single input system  Area1 will be larger than that for a multi-input system, Area2.   

Proof:  Since Y2 > Y1  and A,d,Y1,Y2> 0, we have ��� > ����������.  Because w1 + w2 = 1 it 

follows that Area1 > Area2.  � 

 

Proposition 3: Diversity/Flexibility begets smaller land use, and thereby lower 

transportation costs.  

Lemmas 3a and 3b essentially lay out the logistical benefits of being able to 

source multiple inputs on the same land in one year.  In agriculture, this has long been 

known in tropical and subsistence agricultures “intercropping”.  While a variety of 

agronomic and ecological advantages of intercropping have already been explored [See 
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(Collins and Qualset, 1999; Gliessman, 1998) for reviews], herein, we offer a new one: 

transportation costs.  Put simply, 3a says that when you can source two things on one 

parcel of land instead of one, you will need approximately half as many hectares.  As 

land is inherently un-stackable, the more of it you need, the further out and back you have 

to travel.  3b adds to this saying that, if the two inputs have overlapping life cycles, the 

transportation savings can only be realized if the additional input has a higher expected 

yield over space.  Therefore, this type of diversity/flexibility can reduce expenditures on 

inbound transportation of feedstock in both cases.   

Notably, this is not only a cost savings function, but also a potentially mutualistic 

benefit with environmental costs, as less land is required to feed the example processing 

operation.   Conceivably, this could leave more land available for conservation.   Lemma 

3 also requires its own telling condition: when Γ and ∆ overlap, Y2 must be greater than 

Y1. 

4. Conclusions and Further Work 

 In this paper, we have endeavored to put forward a new design principle for 

sustainable supply chain management, particularly by first drawing examples from those 

industries most connected to the natural world.  We have attempted to bridge disparate 

advancements in operations research and ecology to elucidate what we call 

‘diversity/flexibility’ for the benefit of SSCM.   We herein nominated diversity/flexibility 

for the first time in an effort to begin to fill in the gap of operational insights available to 

the burgeoning field of sustainable supply chain design.   

 Drawing from decades of research in ecology, we have suggested 

diversity/flexibility as a way to learn from the natural world how to build sustainability 
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into our supply chain designs.  We have taken the operations research concepts of 

manufacturing flexibility, product flexibility and process flexibility in a new direction, 

suggesting for the first time that its natural overlap with biodiversity recommends it as 

conceptual tool for practicing sustainable supply chain managers and researchers.  In so 

doing, we tied environmental stewardship to profitability in one new design principle, 

thereby heeding at least two of three calls in Carter and Roger’s famous 2008 definition.  

Of course, we have not explicitly argued the social dimension of the diversity/flexibility 

principle.  However, one could argue that contributing to the health of the ecosystems and 

firms that surround a society is likely to bring about social benefits as well.  

 Because this work is mostly conceptual in nature, a wide host of work remains to 

be done.  Firstly, the propositions and lemmas are intended only as starting points, not 

ending points.  We hope to encourage future research on diversity/flexibility in SSCM.  

Our thinking led us to conditions on each lemma that bear practical implications for field 

logisticians and researchers.  Perhaps further applications and research could lead to new 

conditions on each lemma that could further inform practical sustainable supply chain 

design.   Second, our own work needs to be empirically tested with realistic parameters 

across all of the industries discussed herein.   Finally, the field of SSCM is larger than 

just those industries we have imagined.  Further thinking could possibly extend these 

ideas to practical applications beyond the scope of what we have discussed.  
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Abstract 

 This paper propose5s and tests novel supply chain designs for bioenergy and 

biobased products that result in logistical costs savings of 2% to 38%.  The proposed 

supply chain design reduces the costs of (1) purchasing logistical harvesting equipment; 

(2) operating logistical harvesting equipment; and (3) holding feedstock inventory, by 

using a multitude of crop types as feedstock, instead of just one, as is common in research 

and practice today.   In so doing, this research challenges the prevalent assumption that 

monocultures, despite their known environmental concerns, are preferable from a costs 

perspective.   Simulation/optimization is used to test supply chain designs, and then to 

find the environmental conditions where these new supply chain designs could be most 

profitably implemented.  

 

1.  Introduction 

Biorenewable fuels have the potential to offset worldwide carbon and greenhouse 

gas emissions, develop local economies in rural areas, and enhance energy security in the 

countries in which they are produced [1].  That has spurred significant public and private 

interest around the world.  By federal mandate in the United States, biorenewable fuels 
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production will grow to 36 billion gallons in 2022.  Similarly, the European Union has 

stipulated that the European biorenewable fuels industry grow to meet 10% of its 

transportation fuel demand by 2020 [2].   

The vital role that reducing logistical costs will play in determining the feasibility 

of a future bioeconomy has been widely published.  Hess, Wright and Kenney have 

suggested that inbound feedstock costs will “largely control the rate at which the industry 

grows” [3]. Various authors have attributed from 35% to 90% of supply costs for 

biobased products to logistics under various circumstances [4, 5].  Logistics has thus been 

pinpointed as a significant cost component and potential obstacle to future development 

of the bioeconomy [4, 6-8].   

Research logisticians have recently been called to: (1) seriously address fuel use 

and natural resource use [9]; and (2) design smart logistical plans for the profitable 

development of more sustainable industries [10] .  However, mainstream logistics 

research has only scantly considered supply chain design in the context of many 

developing sustainable industries, especially biorefining and biobased products (e.g. 

[11]).   

In the US and around the world, supply chains for biorenewable fuels and 

biobased products are currently being researched and implemented in the seemingly 

tried-and-true mold of conventional food agriculture — that is, by imagining gigantic 

swaths of land planted year-after-year to a single, high yielding feedstock crop that 

surrounds the biorefinery.   In both food and biofuel production systems, this, unwitting, 

supply chain design is referred to broadly as “monoculture”, and is exemplified by 

modern corn-to-ethanol production in the United States (the world’s largest ethanol 
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producer); sugarcane-to-ethanol systems in Brazil (the world’s second largest ethanol 

producer); and also by researchers’ and politicians’ visions of advanced switchgrass-to-

ethanol facilities that, they argue, will become technically and economically feasible in 

the next 10 to 15 years.   

That the agricultural and biorenewable world has come to embrace monocultural 

supply chain designs is —  like all past — already prologue, and has been well 

documented from a variety of perspectives [12-14].  Similarly well-documented  — 

although, rarely implemented in modern practice  —  are the ecological and agronomic 

reasons to believe that the alternative, more diverse supply chains, that employ a variety 

of crops on the landscape, could benefit both productivity and environmental stewardship 

[15-17]. Do business logisticians now have a role to play in this ongoing discussion about 

changing the future of global agricultural landscapes?  This research suggests that we do.  

The authors suggest that designing supply chains for biobased products that employ 

multiple crops as feedstock offers distinct logistical cost advantages compared to 

contemporary practice and research.  

In so doing, this research challenges the prevalent assumption that monocultures, 

despite the problems already researched, are preferable mostly from a costs perspective.  

The authors suggest that logisticians have a prominent role to play in this discussion.  

Specifically, the question that this research addresses is: from a logistics and inventory 

cost perspective, is the traditional monocultural supply chain design the least cost 

approach given varying environmental circumstances?  This paper contributes to the 

literature by exploring how, and under which conditions, heretofore over-looked savings 

can arise from using multiple crop types as feedstock instead of only one. 
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1.2 Previous research 

The techno-economic research literature to-date is not without suggestions for 

supply chain design in the biorenewable context.  Recent reviews can be found in [18-

20].  In their review, An et. al note the relative absence of strategic thinking about supply 

chains for biofuels compared to the research attention paid to day-to-day operational 

issues.  While a wealth of papers have been written on techno-economic assessment of 

facility placement and technology choices, fewer have considered questions of supply 

chain design.  Notable exceptions include Tatsiopoulos and Tolis [21], who compared 

both centralized and decentralized logistical systems, as well as farmer versus 3rd party 

carriers for corn stalks in Greece.  They found that decentralized systems, where farmers 

themselves were responsible for trucking, resulted in the lowest possible logistical costs 

in their case study area. Sokhansanj et al. [22, 23] have evaluated four ways in which 

switchgrass could be prepared  and stored for truck transportation (square bales, round 

bales, loafing and wet baling).  They found that storing the material in roadside loafs, and 

then grinding it before loading it on to grain trucks was the most cost effective at smaller 

sizes, but that square baling at the roadside, and then transporting square bales to the 

refinery on flatbed trucks became more cost competitive as plant size increased.  Kanzian 

et al. [24] used linear programming and GIS to consider setting up intermediate chipping 

facilities between the forest supplying a biorefinery with woody biomass and an Austrian 

biorefinery.  They found that the intermediate chipping facilities were not cost effective.  

Fan et al. [25] outlined four archetypal supply chains for cellulosic biofuels and found the 

most cost effective and environmentally responsible design depended on the size of the 

facility under consideration. 
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What has been overlooked in recent imaginations and reviews of supply chain 

design for biofuels are the potential costs savings of using multiple crops instead of a 

single one. In Gold’s excellent recent review piece, the logistical problems endemic to 

monocultures are presented; but, the review leaves the emerging evidence that using 

multiple feedstock crops could provide a solution untouched.  Nilsson and Hansson [7] 

used a discrete event simulation approach to find that a two-crop system offered cost 

savings in terms of inventory and logistics at one district heating plant in Sweden. 

Papadopoulos and Katsigiannis used dynamic programming to optimize a biorefinery in 

Greece, and noted that their optimal solution sets contained multiple types of feedstock 

coming in to the refinery, not just one [26]. Similarly, in a case study application of  their 

proposed metaheuristic facility citing and plant optimization model in Greece, Rentizelas 

et al. reported optimal solution sets that used four crops as feedstock instead of only one 

[8].  

What we do not yet know is how robust and generalizable are these emerging 

findings.  Research logisticians have yet to elucidate the mechanisms under which these 

savings arise, and to investigate under which technological and environmental conditions 

one could expect to see meaningful logistical savings from multiple feedstock supply 

chain designs?   This is the research gap addressed by this paper.  

1.3 Research implications 

Because of the projected growth of biorenewable fuels around the world, this 

potential re-design of supply chains (and thereby very large-scale land use) carries 

dramatic implications for practitioners and the communities around the world that will be 

engaged in the bioeconomy. This paper suggests that biorenewable investors and plant 

operators stand to save up to 38% on the cost of delivered feedstock by re-imagining their 
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supply chains to include multiple crops instead of just one.  Companies that seize this 

opportunity would dramatically re-design agricultural land use around the world and 

could make the global transition away from fossil fuels more feasible in our lifetimes.   

We call the logistical benefits proposed to arise from using multiple feedstock 

crops ‘the benefits of diversified supply chains’, and present conceptual arguments for 

their cost savings mechanism in section two.  In section three, a simulation/optimization 

experiment with 81 treatment scenarios is outlined.  Each scenario is optimized three 

times, first as a conventional monoculture, and then again with an increasing number of 

feedstock crops available. The resulting logistics costs for the first five years of a 

simulated biorefinery are compared.  In section four results are analyzed to see, if, and 

when, the benefits of diversified supply chains are present and to what extent.  

Generalizable conclusions are drawn in section five.  In section six, known limitations of 

our study are presented and future work is suggested.   

2. Theoretical Motivation 

 Conceptually, the benefits of diversified supply chains are proposed to manifest in 

two ways: (1) lower fixed expenditures on logistical harvesting equipment; and (2) lower 

capital investment in fixed inventory facilities.  Each of these savings is argued in turn 

and presented as a proposition motivating our model.  

2.1 Fixed expenditures on logistical capital equipment and the benefits of diversified 
supply chains  

All crops become available for harvest during specific time windows, when they 

have grown to maturity and are ready for harvesting.  This is a function of each plant 

type’s unique growth patterns.  In conventional monocultures, where only one type of 
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crop is grown, gigantic swaths of land demand harvesting at the same time — meaning 

that multiple harvesting machines are required to service thousands of acres within a 

single service-time window.  On the other hand, if a diversity of plant types were grown, 

different plant types could become ready for harvest at different times, meaning that a 

fewer number of machines would be needed to service the same amount of land in one 

year.  

Proposition 1: Expenditures on fixed logistical assets will fall as a greater 
diversity of crops is added to the feedstock supply area. 

2.2 Fixed cost of capital inventory facilities and the benefits of diversified supply 
chains 

 When a biorefinery is fed by a single feedstock crop, all inbound material must be 

received during that crop’s single harvestable time window. In practicality, this means 

that at least one year’s worth of feedstock must be held in inventory to keep the 

biorefinery supplied for daily operation until the single crop’s next annual harvest 

window.  This can necessitate large and expensive inventory facilities, where at least one 

year’s worth of inputs must be held on-site.  Multiple feedstock types alleviate this 

burden.  Having multiple crop types means having multiple harvest windows throughout 

the year when inbound feedstock will be received.  Staggering these harvest time 

windows thereby necessarily reduces the minimum amount of feedstock that must be held 

on-site.  In a multi-feedstock scenario, the biorefinery holds only enough inventory to 

meet supply until the next crop’s harvest window, which must be a shorter period of time, 

as a single year is divided into an increasing number of time windows.  

Proposition 2:  The maximum inventory held in a year, which determines the 
minimum size of a storage facility, will fall as a greater diversity of crops is added 
to the feedstock landscape.  
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3.  Research Methodology 

3.1 Simulation and optimization  

A simulation/optimization experiment was designed to test propositions one and 

two under a variety of conditions.  We were interested in comparing the total logistical 

costs incurred when one, two, or three types of crops were employed over a 5-year 

planning horizon.  This use of the optimization method is in-line with Bartolacci et al.’s 

categorization of optimization for strategic investment planning  [27].  The generalized 

bioprocessor’s logistical optimization problem can be formulated as follows. 

A bioprocessor requires a fixed number of tons of biomass per year.  This demand 

is assumed to be evenly distributed across every day of the calendar year.  Demand can 

be met in two ways: (1) by baling and collecting biomass from surrounding farms 

contracted to grow for the bioprocessor; and (2) by purchasing biomass from a spot 

market.  

Collection of biomass from contracted farms takes the following form: Consider 

that the bioprocessor is surrounded by farmers willing and able to grow a finite set of 

crops, I = {1,2,3}, where, for instance, 1 = corn stover, 2 = switchgrass and 3 = reed 

canarygrass.  At the beginning of every simulation run, the bioprocessor contracts with 

farmers for the right to harvest biomass from enough hectares of land to meet annual 

demands over the planning horizon, given expected yields for each crop type.  Let K = 

{1,2,3,4} be a set of 4 logistical machines, where 1 = balers, 2 = self-propelled loaders, 3 

= on-road transports, and 4 = self-propelled un-loaders, which the biorefinery must 

deploy for collecting crops and transporting biomass.  There are both fixed and variable 

costs associated with each piece of equipment k � K.  The fixed cost is given by �  
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(which we chose to approximate with an un-depreciated purchase price because of its 

clear relevance to practitioners), and the variable cost by !  (cost per hour of operation).   

Purchasing biomass to meet demand takes the following form:  Assume that a 

spot market for biomass is available to the bioprocessor.  Purchases on the spot market 

are measured in tons and given by �. This market can deliver biomass of an unspecified 

crop type to the bioprocessor, but does so at a price premium per ton, given by P.  

Because this research is addressing only logistical costs, a partial cost accounting 

approach is employed, wherein the value of P represents a mark-up over the typical cost 

per delivered ton.  (For the purpose of our research questions, it can be assumed that 

other costs, like the costs to the farmer of growing the crops will be similarly incurred 

whether the processor harvests themselves, or buys on the spot market, and that these 

costs are similar across biorefineries).   In later sections, we perform a sensitivity analysis 

on our results with respect to P.  

Whether collected or purchased, biomass that is not immediately processed by the 

bioprocessor accumulates as inventory.  The required size of the bioprocessor inventory 

facility is given by the maximum recorded daily inventory over the simulation.  The 

bioprocessor may or may not choose to hold safety stock (SS) inventory.  Our planning 

horizon, in days, is given by D = {1….d…365a}, where a = 5 (i.e. a 5-year planning 

horizon).   

The bioprocessor problem can be described as the following integer programming 

problem:  
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' 9 #$W>X>Y�E�O � P (8) ' F C�E�O � P (9) - .*� F C�E�3 � 4. O � P. # � T (10) 
  
Where: �����'  An integer decision variable for the discrete number of pieces of capital 

equipment of type k to purchase at time 0 
 - .*.�  Hours worked by each type of capital equipment (k), on each crop type 
i, in day d 
 
 =* Yield per hectare of crop i, expressed in tons 

  Z� Inventory held on site, on day d, or the difference between cumulative 
delivery of biomass and cumulative daily demand up to day d 
 

R The price per ton of building a storage warehouse ($) [� The quantity (tons) of biomass purchased outside of contract on day d. 
 



www.manaraa.com

�$�

�

�

�

P The price of purchasing biomass outside of contract (�), per ton ($) 
 

Dem Annual demand of the biorefinery, in tons S* Hectares of crop i contracted in the given year  !1<� The hectare per hour capacity of machine 1 (baler)  !1<J�L The ton per hour capacities of machines 2 through 4 (loader, truck, un-
loader)  

SS Safety stock held by the bioprocessor (tons) 
 

 

The bioprocessor’s objective is to minimize the cost of: purchasing capital 

equipment; operating the capital equipment over the 5-year planning horizon; 

constructing and maintaining a storage facility; and purchasing biomass from the spot 

market to prevent stockouts at the biorefinery (Eq 1).  These values, X1 X2 X3 X4, Y1 Y2 

Y3 Y4, and �d therefore represent independent decision variables in this model.  

Experiments are conducted to determine their effect on the dependent logistical costs 

defined in equation (1).  Constraint (2) ensures that daily inventory (�d) equals the 

maximum of either the difference between cumulative delivered biomass plus spot 

market purchases and cumulative demand (i.e surplus biomass), or 0.  Constraint (3) 

requires that the bioprocessor’s daily demand for biomass feedstock is met by either 

stored inventory, daily delivery of biomass, or a combination thereof.   In this design, SS 

(in constraint 3) was set equal to 0 because we assume the existence of a robust spot 

market capable of covering any need at any time;  so that over the planning horizon, 

given constant demand, SS would be merely an inventory constant that would not impact 

this paper’s research question.   Constraint (4) ensures that spot market purchases occur 

only when necessary, when cumulative delivery of biomass on that day, minus 

cumulative demand and inventory, falls short of the daily demand.  Constraint (5) 

provides that all of the feedstock flow sequentially from one machine in the supply chain 
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to the next.  Constraint (6) ensures that the amount of machine hours worked in one 10-

hour day conforms to the number of machines purchased �' 
 at time 0.  Constraint (7) 

delimits the number of hectares of each crop harvested each year to the amount specified 

for under contract.  Constraints (8), (9) and (10) ensure that only positive integer values 

of harvesting and logistical equipment are chosen and that they are employed for only 

non-negative numbers of hours.    

3.2 Scenario design and the biobased products supply chain 

The optimization was applied to a carefully constructed simulation of a simple 

biobased products supply chain, based on current, real-world paramaters.  Per Evers and 

Wan [28], simulation was selected for this research because of the following 

methodological benefits: (1) field experimentation with an actual commercial biorefinery 

— and, more importantly, the thousands of hectares of agricultural land required to feed 

it over the planning horizon — would be far too costly and take far too long, especially 

given the multi-crop treatments of interest, which are not being implemented today; (2) 

simulation allows observation of the interactions related to large logistical costs in the 

biobased products supply chain, and freed the authors from incorporating limiting or 

unfounded assumptions about other components of the system (like farmer psychology, 

or different equipment depreciation schedules) that do not directly relate to this paper’s 

research question; and (3) certain aspects of the biorenewable system, like crop yields 

and available work days, are naturally stochastic owing to unpredictable weather patterns.  

Development of the simulation conformed to the 8-step guidelines laid out in 

[29].  Previous engagement with representatives from the bioprocessing industry and 

farmers, who all expressed personal concern about logistical costs in the bioeconomy, 

familiarized the authors with the system.  As the authors’ thinking about logistics and the 
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benefits of diversified supply chains in the biobased product context developed, we 

pinpointed the costs of: (1) purchasing and operating a logistical fleet and; and (2) 

building an inventory warehouse, as the key metrics (dependent variables) of interest.  

Because this research is interested in investigating the logistical benefits that can arise 

when more types of crops are employed, the number of types of crops used to feed the 

biorefinery was identified as the key experimental factor (independent variable).   

A small and simple biomass supply chain was designed, based on the district 

heating plant model outlined in [7], wherein a bioprocessor will require 6,000 tons of 

biomass per year for operation.  In the area surrounding the facility, farmers can and/or 

are willing to grow three types of crops.  It is the responsibility of the processor to collect 

the biomass after it is harvested, bind it into bales for transportation using a “baler”, load 

those bales on to semi-trucks using a “loader”, deliver the biomass to the processor’s 

storage facility via on-road trucking, and then un-load the bales.  Based on both [31] and 

private communication with an industry consultant, the cost of holding this inventory was 

based on a currently popular simple storage yard design, consisting of only purchased and 

cleared land, spread gravel, and annually replaced tarps.  This basic supply chain, which 

is representative of advanced bioenergy applications, is shown in figure 1.  

 

 

Figure 1: Basic bioproduct logistics.  

The capacities and costs of the different pieces of logistical equipment were 

drawn from ongoing private communications with an industry consultant in 2013 and 
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2014, as well as recent academic references [30, 31].  These parameters are shown in 

Appendix A.  Data collection also required estimates for crop yield and crop yield 

variability, as well as the typical range of dates when a crop could be ready for harvest.  

Three crops were chosen for the simulation: one, for the monoculture, that is already 

widely grown (corn stover); and two others that have received significant public and 

research attention as biomass feedstock crops (switchgrass and reed canarygrass).  These 

three crops were also chosen for their known compatibility with the logistical equipment 

considered by this research.  (Corn stover is commonly grown and harvested in the 

manner described; reed canarygrass was previously modeled with the same system and 

equipment in [7]; and switchgrass is not physically different enough from reed 

canarygrass to suggest that the same equipment could not work, at least for this paper’s 

purposes.)  Agronomic research literature was searched to find average reported yields, 

highest recorded yields, lowest recorded yields, and where possible, a measure of 

variability of a single crop over time [32-37] .  Notably, this research rarely reports 

distributions of yield estimates in a given site.  So, per [28], a triangular distribution of 

mean, high and low yields was employed to represent variability.  Finally, consultation 

with an industry professional suggested that we restrict the amount of time between when 

a crop becomes available and when it is harvested to between 25 and 35 days, depending 

on the year, because weather can spoil un-collected biomass.  This data is shown in 

Appendix B.  

With the following data and parameters in place, the simulation was built in the 

Arena © environment, which was chosen for its ease of use and high capability [28], and 

its successful application to bioenergy systems in previous research [7].  The model was 
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first built without stochasticity, so that the research team could hand calculate model 

outputs to confirm programming accuracy.  Once the research team was confident in its 

implementation of the simulation model, an industry representative was asked to imagine 

a scenario similar to one this model could capture, and then asked his professional 

opinion on what the logistical fleet for such a scenario would look like.  His estimates 

were checked against this model and similar results were found, affording the research 

team the confidence necessary to begin experimentation. 

3.3 Experimental design and analysis 

A  3x3x3x3 simulation experiment was designed, wherein the simulation was run 

with (1) one, two, or three available types of crops; (2) with low, medium or high base 

yields for each of the crops in the scenario; (3) with low, medium or high yield variability 

for each of the crops in the scenario; and (4) with three different assumptions (low, 

medium or high) about the price of biomass on a spot market (P).   

Optimization was performed using OptQuest for Arena © software, which uses a 

metaheuristic solution procedure (tabu search), set by our research team to employ 

between 2 and 6 replications per trial solution of each simulation run.  With tolerance (the 

convergence criteria for when two solutions are considered equal between two 

consecutive trial solutions) set at $100, OptQuest typically settled on a solution after 

approximately 900 runs.  With each trial replicated on average four times, this resulted in 

approximately 291,600 simulations.  On a 2.66 GHz quadcore PC with 4GB of memory, 

the simulation/optimization time per treatment was approximately 30 to 45 minutes, for a 

total computer run time of roughly 47 hours.  Results are shown in tables 1 through 5. 
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Table 2: Fixed investments in logistics and warehousing 
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Table 3: Maximum inventory across scenarios and treatments 
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4. Discussion of Results 

4.1 The benefits of diversified supply chains in biobased product systems. 

 In 81 of 81 treatment scenarios, the combined fixed and variable costs of logistics 

fell as more crops were introduced to the feedstock landscape, thus evidencing the 

savings that result from diversified supply chains in the biobased products context.  On 

average, going from one crop to two resulted in savings of 19%.  Going from one crop to 

three saved, on average, 25%.  Going from two crops to three showed 7% savings on 

average.  These percentage savings are shown in table 4 

Table 4:  Savings as a percentage of total logistics costs 

 

 Costs were also considered on a per delivered ton basis. (Owing to stochasticity of 

yield programmed in to the simulation model, the exact same tonnage of biomass was not 

delivered in every model run, which contributed to the additional variability of per ton 

results.)  In 76 of 81 treatment scenarios (89%), adding crops lowered the cost per 
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 High 13% 18% 3%  High 20% 18% 3%  High 8% 18% 3% 
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7% 

Med  6% 3% 2% Med  6% 3% 2% Med  7% 3% 2% 

 Low 5% 6% 4%  Low 5% 18% 3%  Low 4% 6% 4% 
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delivered ton.  On average, moving from one to two crops dropped the per ton delivered 

cost by $7.60; moving from one crop to three crops lowered the per ton delivered cost by 

$10.07; and moving from two crops to three reduced costs by an additional $2.41 per ton.  

Those results are shown in table 5.   
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Next, we investigate the two propositions we suggested as mechanisms for these 

savings.  Then, the sensitivity of these results to different experimental treatments is 

presented.  

4.2 Proposition 1:  Capital equipment savings from diversified supply chains 

 Model output showed evidence for proposition one.  In 66 of 81 scenarios (81%), 

adding crops resulted in smaller fixed investments in logistical fleets and warehousing 

(table 2).  Fixed logistical costs included expenditures on purchasing fleets of balers and 

loaders, as well as purchasing land, materials and labor for construction of a storage 

facility for collected biomass.  The greatest variation in fixed logistical costs arose from 

the required number of balers. The number of balers needed to bale all contracted 

hectares within the 25-35 day time windows fluctuated from four, in mostly high-spot 

market price, single-crop treatments, down to two in mostly low-spot market price, multi-

crop treatments.  With the parameters in Appendix A, this alone represents $280,000 in 

savings, which would account for between 34% and 54% of overall fixed logistical 

expenditures across all scenarios in this paper.   

4.3 Proposition 2: Inventory facility savings from diversified supply chains 

 Maximum inventory also fell markedly as more crops were introduced to the 

feedstock landscape.  Moving from one to two crops resulted in holding 8% less 

maximum inventory on average.  Moving from one to three resulted in 14% less 

maximum inventory.  Moving from two to three showed an incremental reduction of 

maximum inventory of 5%.    Overall, across all the simulations, maximum inventory 

values ranged from between 6,673 to 11,323 tons (table 3).  Given the authors’ decision 
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to consider a relatively low cost storage option, these changes were not especially 

significant to overall expenditures.  (As a reminder, the size of storage facility needed 

was defined by the simulation’s maximum inventory value). The overall range of changes 

in maximum inventory across all simulations was 4,650 tons, which represented only 

between 4% and 6% of fixed logistical expenditures across all scenarios in this paper.  

 Next we consider how the model responded to changes in the treatment 

parameters (base yield, yield variability, and spot market price).  

4.4 Sensitivity to simulation treatments 

 Across simulation treatments, savings were not equal.   Table 6 presents 

percentage savings across scenarios and experimental treatments with the five highest 

and lowest values highlighted.   

Table 5: Savings as a percentage of total logistics costs (highlighted) 
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Herein, conclusions can be drawn about which experimental treatments lead to 

greater logistical savings from diversified supply chains.  First, one can certainly see the 

costs of yield variability being mitigated as more crops were added to the system.   

Moving from low, to medium, to high yield variability, the logistical savings resulting 

from diversified supply chains increased, on average, from 13%, to 16%, to 23%.  As 

seen in table 6, the highest resulting percentage savings were all observed in high yield 

variability experiments.  We attribute these savings dynamics to the portfolio-type effect 

of adding crop types to the landscape.  Adding a second and third crop mitigates the cost 

implications of any one crop dramatically under-yielding (which can result in spot-

market purchases), or over-yielding (which can necessitate greater fixed investments in 

logistical equipment and storage).   

Secondly, one can see a general trend wherein higher yielding environments show 

greater savings from feedstock diversity.  These savings range from 12% in low yielding 

conditions to near 20% in medium and high yielding conditions.  As seen in table 6, all of 

the smallest percentage savings are observed in low yield treatments.  We attribute this 

phenomenon to our selection of crops.   When this model added feedstock diversity, it 

also added dramatically higher-yielding second and third crops (not by design, but 

because they are among the next imminently viable candidates for future bioeconomy 

landscapes in the American Midwest).  Switchgrass shows roughly four times the per 

hectare yield of corn stover. Reed canarygrass shows roughly twice the yield of corn 

stover, per hectare, per cutting.  Keeping in mind, then, that in each simulation, a quantity 

of hectares are contracted according to that scenario’s yield expectations, we see that 
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fewer and fewer hectares are needed both as yield expectations increase, and as the 

number of crops increases.  This, in turn, requires fewer logistical machines.  

Finally, the price of spot market biomass is rather speculative and merited further 

analysis and explanation.  First, this paper’s treatment design considered three values of P 

($33/ton, $36/ton and $39/ton), which represents 110%, 120% and 130% of the baseline 

prices for delivered tons of biomass revealed by the author’s early model work.   When 

spot market prices were low, the savings realized from diversified supply chains were 

lesser than when the spot market price was high.  We attribute this to a further reflection 

of the portfolio effect of diversified supply chains.   We note here that spot market 

purchases were less prevalent in multi-crop scenarios than in single crop ones.  

Therefore, because single crop systems were compelled to buy on the spot market more 

frequently than multi-crop systems, increasing the spot market price tended to penalize 

monocultures. 

5. Implications 

 Increasing from one to two or three crops shows potential for meaningful 2% to 

38% savings on logistical costs, which have been previously reported to account for 

between 35% to 90% of the cost of producing biobased products.  These savings could be 

realized in the short term by the 800 biomass to power plants already operating in 

European Economic Area;  the roughly 100 biomass to power facilities in United States, 

or any of the many other advanced biomass technology projects around the world capable 

of processing a diversity of feedstock.  The savings shown in this paper suggest that 
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investors and companies that seize this opportunity stand to dramatically change how 

agricultural landscapes and biorenewable supply chains are designed around the world.  

 But, the potential savings do not apply equally under all conditions.  As 

formulated in this model, low-yield, low-yield-variability environments showed the 

weakest of all savings from moving beyond monocultures.  The real potential for reaping 

the logistical benefits of diverse supply chains seems to be in high-yielding, high-yield-

variability environments, like flood prone, low elevation areas, or irrigated areas at risk of 

water contamination or restrictions.  This means that field logisticians need to consider 

their environmental surroundings when designing cost effective supply chains for 

biorenewable fuels and products.  

 Because the logistics of biomass account for such large proportions of the overall 

costs of biobased product production, strategies for reducing logistical costs are important 

steps to growing the industry in line with public and private objectives.  Meeting these 

ambitious goals for the biobased products industry could result in significant reductions 

in greenhouse gas and carbon emissions from energy production around the world, and 

could help in transitioning societies away from fossil fuels.  

 

6. Limitations 

From a practical perspective, additional crops — many of which, if suited to that 

same geographical region will likely share similar harvesting time windows — could 

offer little-to-no logistical equipment savings over a mono-cropped system.  This 

simulation experiment considers crops that have been considered mainly for the 
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American Midwest and offer different logistical requirements.  Not every region will be 

hospitable to crops with different logistical patterns.  

Also, this study offers only partial cost accounting, both from the farmers’ and the 

bioprocessor’s perspectives.  We chose to look at only those cost components directly 

impacted by the logistics of harvesting, transporting and holding different crops.  Several 

detailed cost considerations (like amortization of capital equipment for bioprocessors) 

have been left out; as have highly variable and as-of-yet speculative costs (such as the 

price necessary to entice farmers to try growing different crops). In the American 

Midwest, the predominant monoculture crop can yield two products (corn grain for feed, 

and corn stover for biomass).  This dual use will certainly impact the practicality of our 

suggestions, and merits further work. 

Finally, analysis of our results suggests a meaningful portfolio effect of 

diversified supply chains, wherein yield of one crop type varies independently from other 

crop types  to beget real logistical cost savings.  While we believe this to be 

representative of many real world situations, there can certainly be yield correlations 

between crops of different types growing in the same area during the same year.  Future 

researchers could work even more interdisciplinarily with agronomists and plant 

scientists to effectively model this complex ecological relationship between weather, 

yield and neighboring plant types.  
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Appendix 3.A: Machine capacities, fixed costs and operating costs  

Bracket references indicate data source 

High Density Baler 
Fixed Cost [31]: $140,000  
Variable Cost [30] : (Labor, Fuel, Twine): $119/hour  
CAPACITY [7]:  
     Stover: (Yield/12) tons/hour 
     Switchgrass: 0.75(Yield/12) tons/hour 
     Reed Canary Grass: 0.75(Yield/12)  tons/hour 
 
Self-Propelled Loader 
Fixed Cost [30]:  $94,000  
Variable Costs (Labor, Fuel) [30]: $69.44/hour  
CAPACITY [7]: 0.5 hours to load or unload one truckload (24 bales) 
Transportation 
Fixed Cost:  $0 
Variable Costs:  $65/hour   
CAPACITY [30]: 24 Bales, 13 miles per hour  
 
Storage facility 
 $7/per ton of capacity. [31] 
Cost and capacities adapted from sources noted above and verified in 2013 and 2014 with 
an independent industry consultant.  
 
�

Appendix 3.B: Base yields, yield variability and schedules for scenarios 1 through 81 

 HARVEST YIELD (Mg/HA) VARIABILITY (Mg) 

 Start Date High Yield Med Low High Med Low 

Crop 1 
Corn 

Stover 

Oct 7 
To 

Oct 31 

4.39 3.62 3.09 2.12 1.49 0.72 

Crop 2 
Switchgrass 

Oct 8 
To 

Nov 15 

16.2 13.5 11.0 8.4 5.4 2.4 

Crop 3 
Reed Canarygrass 

1: 
3  -20 June 

2: 
1 -19 Sept 

9.02 6.5 4.3 
 
 

2.2 1.5 0.7 

Appendix 3.B References: 
[32 – 37] 
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CHAPTER 4: BIORENEWABLE FUELS AT THE INTERSECTION OF 
PRODUCT AND PROCESS FLEXIBILITY: A NOVEL MODELING APPROACH 

AND APPLICATION 

Modified from a paper accepted by the International Journal of Production Economics 
150 (2014), 1-8. 

David Correll6, Yoshinori Suzuki7, Bobby J. Martens7 

 

Abstract 

In recent years, governments, industry and academia have all invested increasing 

amounts of time, effort and resources into the production of biorenewable fuels.  This 

interest owes, among other reasons, to our planet’s growing demand for energy, depletion 

of fossil fuel resources and the negative effect of drilling for and burning fossil fuels on 

the health of our eco-systems and atmospheric chemistry.  However, research suggests 

that biorenewable fuels have the potential to cause environmental and social calamities of 

their own – especially when produced in the same ways and at the expense of 

conventional food production.  This paper proposes novel supply chains and land use 

plans for advanced biorenewable fuels which are measured for cost and environmental 

impact.  A two-stage Stackelberg leader-follower mathematical optimization model is 

proposed.  The model uses a series of integrated and sequenced linear programs to 

optimize the benefits of leveraging biodiversity for the production of advanced 

biorenewable fuels. Numerical experiments with our model show statistically significant 

cost, land use and environmental improvements on the order of 10% to 25%.  Because 
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the model captures two types of flexibilities (product and process) interfacing across 

firms, implications are drawn for production systems in other industries where distinct 

flexibilities meet and environmental impacts are critical.  

1. Introduction 

In both energy and agriculture, several changes are occurring at once:  (1) Global 

supplies of fossil fuel are rising in price, and plausibly scarcity, as worldwide demand 

continues to grow; (2) industry and governments are investing heavily in alternative 

energies, one of the more popular being “biofuels”; (3) meanwhile, agricultural 

production in the developed world has become highly centralized and homogenized, 

commanding much larger swaths of land,  employing larger fleets of equipment and 

generating negative environmental externalities, all of which has lead scientists, 

journalists, and the public to; (4) increasingly cast critical eyes towards biofuels’ 

potential to offset fossil fuel use without causing environmental and social calamities of 

their own.  This research sits itself at the confluence of these four troubling, and 

seemingly disparate, developments.  This paper proposes a way that advanced biofuels 

can be produced more efficiently and more sustainably, with optimized supply chains that 

capitalize on biodiversity in order to reduce land usage, environmental degradation, and 

overall costs of biofuels production.  Our approach entails a unique application of 

operations research (OR) techniques to uncover the benefits of leveraging natural 

biodiversity in production systems for alternative fuels.  

The production system under consideration (the farmer-bioprocessor dyad) and 

our mathematical model of it bears broader research implications too.  We frame the 

farmer as a supplier (in this case of plant feedstock), who is product flexible, meaning 
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“The ability to changeover to produce a new (set of) product(s) very economically and 

quickly” (Beach et al., 2000; Browne et al., 1984).   Herein, product flexibility denotes 

the ability of the farmer-supplier to produce different crop types from year to year.  The 

buyer in this dyad is the bioprocessor, who purchases from farmer-suppliers feedstock for 

conversion into biorenewable fuels.  We frame the bioprocessor-buyer as a process 

flexible, meaning “The ability to produce a given set of part types, each possibly using 

different materials, in several ways” (Beach, 2000; Browne, 1984).  Herein, process 

flexibility denotes the bioprocessor’s ability to convert any of the farmer-suppliers’ crop 

types into biofuels.  This process flexibility is unique to emerging advanced biorenewable 

fuel technology.  

Production researchers have been increasingly interested in flexible 

manufacturing problems since the 1970s, when computer-controlled process automation 

and Japanese-style production systems began to be implemented across a wide variety of 

industries (Fine and Freund, 1990; Karsak and Kuzgunkaya, 2002).  Over the years, this 

journal has published several modeling approaches to flexible manufacturing problems, 

including: Kumar (1995), who proposed finance literature’s ‘options theory’ as a  better 

way evaluate investments in expansion flexibility than traditional Net Present Value 

calculations;  Gertosio, Mebarki and Dussauchoy (2000), who suggested multi-layered 

discrete event simulation as a decision making tool for analyzing how different control 

systems and physical production systems interact under manufacturing flexibility; Karsak 

and Kuzgunkaya (2002), who proposed fuzzy multiple objective programming as a fitting 

methodology for evaluating the worth of flexible systems, because it uniquely 

incorporates both strategic and economic benefits, whereas classical analytical modeling 
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considers only the latter; Tseng (2004), who employed elements of game theory to 

investigate under what types of competitive environments investments in more expensive 

flexible systems pay off and found that increased competition reduces firms’ incentive to 

invest in expensive flexible technologies; and  Francas, Löhndorf and Minner (2011), 

who optimized two types of flexibility, labor and machine, in a single-firm production 

system using a two-stage stochastic programming approach.  

In the research literature reviewed above, each type of flexibility has traditionally 

been considered either in isolation, or as it interfaces with another type of flexibility in a 

single firm.  Examples of the latter include: Chod and Rudi (2005), who used a 

Stackelberg model to consider resource flexibility and “responsive pricing” in a single 

production system;  Iravani, Kolfal and Van Oyen  (2012), who modeled one firm’s 

tradeoffs between process flexibility and inventory flexibility; and (Francas et al., 2011).  

In their recent review of supply chain flexibility, Jayant and Ghagra  (2013) noted that 

more attention should be paid to inter-organizational flexibility in order to realistically 

depict real-world supply chains.  Proposing an approach to modeling real-world 

circumstances of different types of flexibilities intersecting across firm boundaries is this 

paper’s broader contribution to research.   For practitioners, this approach also has merit 

in the classic sense of game-theoretic models: it allows one player (supplier or buyer) 

with a distinct flexibility to predict the moves of their partners (who have different 

flexibilities) under a variety of scenarios.  Over time, however, it is possible that 

cooperatives of biomass processors and farmers could jointly own and operate both 

biorefineries and their surrounding farms, and then use the model presented in this paper 

to find optimal management strategies.  Similarly, third-party service providers working 
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in-between growing biorefineries and farming operations could use the model presented 

herein to discover appropriate price incentives for lowering overall logistical costs and 

protecting the natural environment.  

The paper continues as follows.  Section two gives further background to the 

problems above.  Section three presents our proposed solution to the issues presented in 

sections one and two.  Section four presents our mathematical formulation of a biodiverse 

biofuel supply chain, modeled as a Stackelberg leader-follower optimization based on a 

sequenced series of two basic types of integrated linear programs.  In section five we 

analyze the results of simulation runs on our model.  Section six presents implications for 

biofuels producers, as well manufacturing flexibility research, and limitations and 

suggestions for further work. 

2.  Problem Background 

2.1 Fossil fuels 
Today’s world faces the potential for serious energy shortages in the near-term, 

owing in part to: (1) our own profligate consumption of available energy sources over the 

last 200 years, and (2) the mounting environmental costs associated with supplying raw 

material for different energy conversion technologies.  During the advent of coal and 

steam power in the 19th century, energy use by humans increased 10-fold (McNeil, 2000)  

The development of oil and natural gas resources in the 20th century exacerbated this 

withdrawal ten times over.  Environmental historian J.R. McNeil calculates that humans 

have expended more energy since 1900 than in all of preceding human history combined 

(McNeil, 2000).  Future consumption is projected by many to grow even faster (EIA, 

2010; UN, 2007). Documented affects of growth in population and energy use over the 
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last 200 years include: depletion of economically accessible fossil fuel resources, 

changing atmospheric chemistry and climate, degradation of ecosystem services, 

contamination of freshwater, despoilment of soils, and diminishment of global plant and 

animal biodiversity (Costanza et al., 2007; Hall et al., 2003). 

2.2 The bioeconomy solution 

For these reasons, and others, governments have become increasingly interested in 

transforming agricultural crops into fuel and/or other products that, today, are typically 

made from crude oil.  These “biorenewable fuels” are defined as fuels made from plant 

material, living or recently deceased (Brown, 2003). By federal mandate in the United 

States, biorenewable fuels production will grow to 36 billion gallons in 2022.  Similarly, 

the European Union has stipulated that the European biorenewable fuels industry grow to 

meet 10% of its transportation fuel demand by 2020 (Robbins, 2011).   

But, in the US and in Europe, biorenewable fuels are being produced in 

accordance with the tenants of conventional modern food agriculture – that is, by planting 

gigantic swaths year-after-year to single, high yielding crops that demand significant 

chemical and fertilizer treatments, as well as large fleets of specialized machines to 

harvest and transport them.   This practice is referred to broadly as “monoculture”.  For 

example, in the largest ethanol producing state in the world’s largest ethanol producing 

country, Iowa, USA, 90% of the available cropland has been devoted to only 2 crops for 

the past 20 years.   In recent years, this land has been increasingly devoted to only corn.   

Fully one-third of that corn output now goes to making corn-based ethanol. In the world’s 

second-largest producer, Brazil, ethanol is made from similarly large monocropped tracts 

of sugarcane. 
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2.3 Growing criticisms of the bioeconomy 

The rise of monocropping as a standard practice in commercial agriculture is 

attributed by agricultural and technical historians to the substitution of capital for labor 

following  demographic shifts in the post WWII era (Anderson, 2009; Rasumussen, 

1982).  But, while economically expedient, monocropping begets several negative 

environmental externalities, including soil erosion, water pollution and release of carbon 

stored naturally in soils.  As land around the world has been increasingly dedicated to 

monocropping for biofuels production, scientists have focused renewed attention on 

biofuels’ potential to exacerbate these problems  (Foley et al., 2005). For example, 

Searchinger et al (2008) forecast that increases in corn-based ethanol production around 

the world could double global greenhouse gas emissions over 30 years, as perennial 

native lands are converted to large fields of high-input mono-cropped annual corn.  

Similarly, Stone et al (2010) predicted that to meet the US Federal biorenewable 

mandates with corn production alone would demand a 6-fold increase America’s 

agricultural water use.  (For a further review of biofuels’ promise and problems, see also 

Nature 474/7352).  Finally, the UN special ambassador on food has called it a “crime 

against humanity” to dedicate such large swaths of agricultural land to corn production 

for biofuels, while millions still go hungry around the world (Ferret, 2009).   

2.4 Advanced biorenewable fuels and the environment 

 Advanced biorenewable processing technologies present the opportunity to 

convert heterogeneous mixes of crop feedstock into a single end product, which we refer 

to as biofuels’ process flexibility.  Ecological and agronomic research suggests that 

employing mixes of crops and alternatives to the conventional monocultures in these new 
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process flexible systems could alleviate some of the growing environmental concerns 

surrounding biofuels.  Perlack (2005), Tillman (2006) and Groom (2007) observe that 

alternatives to monoculture biofuel production systems including mixes of prairie 

grasses, trees and municipal waste reduce C02 emissions.  Williams (2009) has 

documented how new alternatives to the monoculture system reduce water use in biofuels 

systems.  Tillman (2006) and Groom (2007) show how alternatives and feedstock mixes 

can reduce soil erosion compared to monoculture systems.   But while this research 

shows the environmental benefits of transforming biofuels production systems, it is not 

yet clear how to operationalize these advantages for practitioners.  This paper endeavors 

to bridge this gap.  

2.5 Biodiversity and logistics in the advanced bioeconomy 

We offer three reasons why, when biorenewable processing technologies are ‘process 

flexible’ – meaning that they can convert a variety of different plant materials into 

common end products – optimized diverse landscapes may outperform modern 

conventional monocultures in terms of logistical costs of production, as well as  

environmental footprint.  First, different plants naturally give and take different things 

from the environment in which they grow.  In the case of nutrients, some plants naturally 

deposit fertilizers such as nitrogen, while others deplete it (Pimentel et al., 1997).  

Replacing nitrogen as a synthetic fertilizer is a significant cost of corn production - and a 

major source of water pollution for conventional agriculture.  These production costs can 

be alleviated by incorporating nitrogen fixing plants on the landscape over time.  Second, 

because biomass was recently living plant material, it is naturally full of air and water – 

which are useless to biorefineries and very expensive to move owing to air’s bulk and 
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water’s weight.  Arranging denser biomass sources further away from the biorefinery, 

and bulkier biomass closer, can reduce transportation cost by maximizing the efficiency 

of truck transport on longer trips.   Finally, all crops become available for harvest during 

specific time windows, when they are ripe for harvesting.  In conventional monocultures, 

where only one type of crop is grown, gigantic swaths of land become ripe at the same 

time – meaning that multiple harvesting machines are required to service thousands of 

acres within a single service-time window.  On the other hand, if a diversity of plants 

were grown, different plant types could become ready for harvest at different times, 

meaning that a fewer number of machines would be needed to service the same number 

of acres in one year.  

 But, while the potential environmental and logistical cost savings benefits of these 

production systems are conceptually clear, how real-world multi-actor supply chains can 

transition to them is not.  The costs and benefits of these new flexible systems will accrue 

to different actors in the supply chain as a result of the different decisions that they and 

their trading partners make.  Also, even though there are benefits to both sides of 

interfacing their flexibilities, it is likely that in practice each side will seek to maximize 

only their own objectives. Practitioners and researchers need a way to consider the 

production system as a whole, where two different flexibilities meet – either for the 

purpose of joint optimization, third-party optimization, or to simply predict and to 

analyze the moves of their trading partners for scenario analysis.  Our work presents a 

mathematical model that allows for simulation and optimization of these new systems 

over time.   
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3. Modeling Product and Process Flexibility in BioEconomy Landscapes 

To frame the presentation of the mathematical model, we first describe a conceptual 

picture of the relationship between farms and biorefineries in our model and the systems 

that are optimized.   This conceptual framing of the biorenewables industry was based on 

discussions with both farmers and bioprocessing industry representatives.  That system is 

shown in Figure 1. 
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Figure 1: Conceptual Model 

 In this model, farm businesses are managed by independent actors (farmers), who 

make their own decisions regarding which crops to grow on the land that they farm.  That 

is, the farmers are product flexible, meaning that they can readily change their output 

between time periods.  In this sense, product flexibility is applied in the conventional 

sense, as defined in and recently studied in (Goyal and Netessine, 2005), save for: (1) the 
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time frame, which makes product decisions on an annual time scale owing to the natural 

growing season of plants; (2) their product decisions are influenced by their downstream 

buyers between time periods; and (3) their product decisions directly impact the 

environmental and logistical costs of the entire supply chain.  

  A biorefinery (or its agent) purchases from its surrounding farmers the right to 

harvest acres of farmland with the biorefinery’s own specialized equipment.   

Biorefineries are process flexible, meaning that they can convert any of the farmer’s 

feedstock outputs into biofuel.  In this sense, process flexibility is employed herein along 

the lines defined and recently studied in (Graves and Tomlin, 2003; He et al., 2012; 

Iravani et al., 2012), save for that the shadow prices revealed by their optimizations are 

passed upstream to their suppliers in our model, and that their environmental impact is 

measured, and entirely determined by their suppliers’ decisions.    

 Costs of planting and growing crops accrue to the farmers.  Costs of harvesting 

and transporting crops accrue to the biorefinery.   This price that a biorefinery will pay 

for an acre of a given crop is announced by the biorefinery to the farmers annually ahead 

of the growing season in order to entice farmers to grow the most economically expedient 

mix of crops in the lowest cost spatial arrangement for the biorefinery.  Farmers weigh 

the prices for each crop on offer from biorefineries against the prices on offer from other 

conventional markets.  (Herein we call crops that can be partitioned for sale to both 

biorefineries and conventional markets “dual use”, because part of the crop goes to 

biorefineries and part to conventional markets, while the farmer gets paid for both – more 

on this in section 4.1).  Spatially, the land surrounding the biorefinery can be divided into 

discrete sub-areas (e.g. concentric rings surrounding the biorefinery). 
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 The prices that biorefineries will pay for a given crop in a given area and farmers’ 

responses to those prices are calculated as follows:  Initially, a biorefinery is assumed to 

be surrounded by a crop landscape that is determined exogenously by the surrounding 

farmers (likely, but not necessarily, the conventional regional monoculture).  In its first 

year, the biorefinery meets its annual biomass throughput requirement by contracting for 

and harvesting the requisite quantity of biomass from surrounding farms at a pre-set base 

price per expected ton.  We call this “basepay”.  This base price represents the initial 

price that the biorefinery offers for biomass after collecting input from the farmers, and is 

assumed to be attractive enough for them to produce sufficient biomass of at least one 

variety for the first year of the biorefinery’s operations.  The initial harvest plan for the 

biorefinery is determined by a cost-minimizing mixed integer linear program.  Shadow 

prices for potential alternative crops in each of the discrete spatial areas that surround the 

biorefinery are then empirically derived from this first LP.  The shadow price for each 

crop in each sub-area is then added to the base price for that sub-area to determine the 

maximum possible price premiums that the biorefinery will announce for the next 

growing season. 

 The farmers’ planting decisions in the surrounding area are modeled, in 

aggregate, as a profit-maximizing network flow linear programming problem, where the 

prices that biorefineries announce for the coming growing season represent revenues, and 

the costs of growing different crops in different sequences over time represent the costs 

of production.   The network flow formulation allows us to capture how costs and 

environmental measures change based on prior years’ land use, per Detlefsen’s 

contribution of this technique to conventional agricultural modeling in 2007 (Detlefsen 
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and Jensen, 2007).  To this approach, we add arc parameters relevant to biofuels 

production as well as environmental quality measures (in this case, soil erosion), which 

allows us to keep track of our proposed system’s environmental performance.  

4. General Mathematical Model 

Our model consists of an integrated sequence of two basic types of linear 

programs interacting over time.  First, the biorefinery seeks to minimize the cost of 

collecting a requisite amount of biomass every year (“the Biorefinery model”).  Second, 

farmers seek to maximize their profit each year by choosing which crops to grow, given 

the price incentives offered by the biorefinery (“the Farmers’ Model”).  The price 

incentives that biorefineries offer are calculated annually by empirically deriving shadow 

prices for crop availability in the biorefinery model, based on the previous year’s 

cropping plan that resulted from the farmer’s model (see Figure 2).  
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Figure 2: Two-Stage Model Development 

4.1 Generalized biorefinery model 

Consider a biorefinery facility serving a finite set of spatial areas  R  = {1, 2, …, r, 

… } surrounding the facility.  Let I = {1, 2, …, i, … } be the finite set of crops that can 

be planted in R, and T = {1, 2, …, t, … } be the set of time periods observed in one year 

(e.g., weeks, months, or quarters).  Also let K = {1, 2, …, k, … } be the finite set of 

“equipment mixes” (number of harvesting machines and transportation vehicles) which 

the biorefinery can choose to deploy for harvesting crops and transporting them in a 

given year.  There are both fixed and variable costs associated with each equipment mix k 

∈ K.  The fixed cost is given by Fk (cost per year), and the variable cost by Cikr (cost per 

harvested acre in each subregion).   
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Our Biorefinery model is expressed as a mixed-integer linear program as: 

  (1) 

 Subject to:   (2) 

  (3) 

  (4) 

  (5) 

  (6) 

  (7) 

where θk is a binary variable indicating the equipment deployment decision (1 if 

equipment mix k is chosen, 0 otherwise), and Xitkr is a continuous decision variable 

indicating the acres of crop i to be harvested by using equipment mix k in spatial area r at 

time t.  Capk, Cropirt, and REQ denote the harvesting (and transporting) capacity of 

equipment mix k (per time period), the total availability of crop i during the planning year 

(which is determined by the farmer model output of the previous year), and the required 

annual biomass quantity for the biorefinery, respectively.  Yit represents the yield per acre 

of crop type i at time t measured in tons.  “Q” is any arbitrarily large number.  
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 The refinery’s objective is to minimize the cost of harvesting and transporting the 

amount of biomass needed to meet their annual throughput requirement.   Constraints (2) 

and (3) jointly ensure that only one equipment mix is chosen for each year and forces X 

to be 0 when θ = 0.  Constraints (4) specify both the lower and upper bounds of Xitkr.  

Constraints (5) mandate that the harvesting performed in each time period does not 

exceed the maximum machine fleet’s capacity per time period.  Constraints (6) require 

that the total harvesting performed in each spatial area for each crop type does not exceed 

the available (harvestable) amounts grown by farmers, while constraint (7) makes certain 

that the total harvested biomass is at least as large as the annual biomass requirement. 

 Except for the first year (year 0) the shadow prices are calculated annually for 

constraints (6) for all i and r, which are then input into the farmers’ model.  (Notice that 

since the cost of transportation varies from one spatial area r to the next because of the 

varying distance between the refinery and r, the shadow price is unique to each r.)   Since 

the shadow prices for mixed-integer programs cannot be calculated in a standard way, we 

empirically derive them by re-solving the biorefinery model m times, where m = |I|x|R| 

represents the number of crop availability constraints (6).  Specifically, for each of m 

crops we first re-solve the model after increasing the right-hand-side of (6) (crop 

availability) by one unit (acre), and then compare the resulting objective value with the 

original objective value for that year to derive a shadow price.  While in theory the 

amount of land devoted to a certain crop can be increased by a value smaller than one 

acre, in practice farmers will adjust the land size only in increments of one acre.  This 

condition implies that the shadow price derived by our method is consistent with the 
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concept of average shadow price that is widely used in the mixed-integer programming 

literature (e.g. (Crema, 1995; Liao et al., 2009; Mukherjee and Chatterjee, 2006) 

4.2 Generalized farmers’ model 

The Farmers’ model is shown in Figure 3, which seeks to maximize the aggregate farmer 

profit over a finite planning horizon.   
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Figure 3:  Farmers’  Model 

Let G = {N, L} be a graph representing the crop choices to make for the farmer model, 

where N = {1, 2, … , n} is the finite set of nodes and L is the set of edges connecting the 

nodes.   The expected annual profit of farmers for moving from node a to node b is 

denoted πab.  The farmer model can be expressed as a capacitated network-flow model 

(the well-known transshipment model) as follows: 
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    (8) 

       Subject to:   (9) 

     (10) 

     (11) 

     (12) 

where zab is a continuous decision variable indicating the crop allocation, Capab is a 

constant indicating the arc capacity, and Acres is the total acres of land available to the 

farmers (assumed to be time invariant).   Both the costs of production and environmental 

metrics are attached to the arcs, to capture how growing crops in different sequences 

changes the costs of production and environmental ramifications.   

The objective is to maximize the profit for each discrete spatial area r (note that, 

because each r is assigned its own set of shadow prices in the biorefinery model, the 

farmer model must be solved for each r).  Constraints (9) specify both the non-negativity 

and arc-capacity constraints, while constraints (10)-(12) jointly specify the network flow 

constraints.  The arc capacity constraints can be used to control the sequence of crop 

planting such that the model could respect a “ do not follow list”  (which specifies the 

crops whose production cannot follow those of certain other crops), and a “ consistency 

list”  (which specifies the crops which, once planted in a given area, must be grown in the 
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land for multiple years consecutively), which allows the model to capture the reality of 

annually planted crops, and perennial crops, which stay on the land for multiple years.   

πab of the objective function is calculated by the following formula: 

      πab = BasePay + ShadowPriceb + DualUseb – Costab           (13) 

Where BasePay is a constant representing the price floor (per ton) for biomass paid by 

the biorefinery to the farmer, regardless of crop choice.  ShadowPriceb is the shadow 

price for having an additional unit of the crop indicated by node b as calculated in the 

biorefinery model.  DualUseb is a stochastic variable showing the value of a dual use of 

the crop (e.g., sale of corn as grain as well as sale of the corn plant’ s stover to the 

biorefinery) indicated by node b (at the time of solving the farmer model).  Costab is the 

cost associated with growing the crop indicated by node b one year after growing the 

crop indicated by node a on the same land.   Note that we do not include the 

environmental costs in Costab because it represents the cost for the environment, and not 

for the farmers.  However, we use this environmental cost as a performance measure later 

in the empirical section, where we test the effectiveness of our approach.   

5. Numerical Experiment 

In this section we conduct a numerical experiment to test the effectiveness of our 

approach.  Specifically, we address the following questions: First, can an optimized mix 

of crops reduce supply costs for a biorefinery?  Second, what will happen to farm profits 

under our proposed regime?  Third, how would optimized biodiverse feedstock 

landscapes impact the amount of land required to supply a biorefinery, as well as the 

environmental footprint of that land use? 



www.manaraa.com

&$�

�

�

�

For model analysis, we designed a simulation-based numerical experiment.  The 

two-stage model described in sections three and four was calibrated to conditions 

representative of the current environment in Iowa, USA.  This calibration included 

consulting with industry representatives and farmers to find realistic crop choices and 

price scenarios, as well as reviewing agronomic and agricultural economics literature to 

find parameter values for crops’  yields and costs of production and the costs of harvesting 

and transportation. 

We assume the following:  A small-scale advanced biorefinery will need 150,000 

tons of biomass per year to operate and is introduced into an agricultural landscape 

dominated by a corn monoculture.  Two other crops are candidates for this environment 

and the refinery’ s conversion technology: switchgrass, a perennial grass which can be 

harvested in either late Summer or Fall; and sweet sorghum, a very high yielding, but 

costly, variety of sorghum that is harvested in the Fall.  Our model divides each year into 

quarters and considers a 5-year planning horizon.  Spatially, our model considers land 

divided into three concentric rings of 10-mile radii that surround the biorefinery, where 

75% of the land is assumed to be cropland.  Yields and costs of production for these 

crops are shown in Table 1.  [A complete data set is available from the authors upon 

request.]  The market price of corn grain (a dual use revenue stream), and yields of all 

crops were treated as stochastic variables that changed randomly from year-to-year 

within the five-year planning horizon.    
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Table 1:  Representative yields and costs assumptions for numerical experiment 

Base Yields and 
Costs Yield Production Cost ($/acre) 

  Grain (bu/acre) 

Stover 

Establishment 
Perennial 

maintenance 

Harvest 
/Transp
ortation 

Cost (tons/acre) 

Corn 150 2 $432.43  �� 19.3 

Switchgrass 3.5 359.94 207.86 
15.8

3 

Sweet Sorghum �� 7 309.58 ��

352.
82 

aSweet sorghum includes a charge for drying the crop 
bIn the complete data set, yields and costs are adjusted based on land use in the previous year 
(farmer model) and spatial area in which the crop is grown (biorefinery model).   Full data set is 
available upon request. 

 

We present two experiment scenarios for analysis.  In the first, price conditions 

exemplary of the current environment were used.  The price for corn’ s dual use was 

stochastic between $4 and $8 per bushel.  BasePay was set to $50 per ton.  The second 

experimental scenario considers a situation where biofuels, and thereby biomass, are 

relatively more lucrative.  In the second scenario, the DualUse price was narrowed and 

lowered to between $4 and $6 per bushel and Basepay was increased to $65 per ton.  

Results for key performance measures are presented as follows: baseline results for each 

scenario are calculated based on meeting the biorefinery’ s requirements with an all corn 

(monoculture) landscape.  These results are compared to the optimized biodiverse 

landscape, wherein the biorefinery can use the price premiums presented in Section 4 to 

give incentives to farmers to grow different crops in different areas.  These results are 

presented in Tables 2, 3 and 4 and Figure 3.   
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For each randomly generated instance, 66 integrated and sequenced linear 

programs are solved (51 biorefinery models and 15 farmer models).  For analysis, we 

solved 500 instances per experiment, resulting in 33,000 LPs.  Numerical experiments 

were implemented using Microsoft Visual Basic.NET along with IBM CPLEX 

optimization software.   On a 2.66 GHz quadcore PC with 4GB of memory, the run time 

per experiment was approximately 15 minutes.   

Table 2 Average Annual Results 
Scenario 1 (n = 500)   Scenario 2 (n = 500) 

  Baseline  Optimized   Baseline Optimized 

Biorefinery Cost 12,014,355 8,677,097   14,264,355 10,035,833 

Farm Profit 1,773,650,242 2,041,859,434   1,398,804,803 1,976,872,218 

Acres Harvested 25,000 20,302   25,000 18,946 

Soil Erosion 4,060,826 3,769,997   4,060,825 3,572,146 

Table 3 Comparing Optimized to Baseline results in each Scenario 
(Results normalized to baseline results for each scenario) 

Scenario 1 (n = 500)   Scenario 2 (n = 500) 

  Baseline  Optimized   Baseline Optimized 
Biorefinery Cost 1 0.72   1 0.7 

Farm Profit 1 1.15   1 1.41 

Acres Harvested 1 0.81   1 0.76 

Soil Erosion 1 0.93   1 0.88 

Table 4 Statistical Significance 
Scenario 1 (n = 500)   Scenario 2 (n = 500) 

  
Mean 

(normalized) t-statistic 
p 

value 
Mean 

(normalized) t-value p value 
Biorefinery Cost 0.72 -133.943 <0.001 0.7 -158.388 <0.001 

Farm Profit 1.15 14.776 <0.001 1.41 25.195 <0.001 

Acres Harvested 0.81 -67.125 <0.001 0.76 -79.3777 <0.001 

Soil Erosion 0.93 -18.004 <0.001 0.88 -26.271 <0.001 

1-sided p-value comparing scenario baseline to scenario optimization 
All means normalized to each scenario's baseline values. 
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5. Results 

Table 2 shows comparisons of mean values for four key measures of the 

numerical experiment: (1) overall biorefinery cost of harvest and transport; (2) overall 

farm profit; (3) total acres harvested for the biorefinery; and (4) landscape soil erosion.   

Table 3 shows all measures normalized to each scenario’ s monoculture baseline model 

for convenient comparison.   In Table 4, P-values and t-statistics for a t-test comparing 

the means of the optimized runs and the baseline scenarios show that the optimized 

results are significantly different.  For every performance measure, the p-value returned  

<0.001.  For biorefinery cost and overall farm profit, this result is intuitive, because both 

measures were included as objective functions in the two-stage model.  It was 

theoretically impossible that optimization could result in higher cost for the biorefinery or 

lower overall farm profit.  P values <0.001 were also found  for comparisons of soil 

erosion and total land use, which were not included in either of the two basic model 

type’ s objective functions, indicating strongly significant improvements in both measures 

as a result of our optimization. 
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Figure 4: Numerical Experiment Results 

 

These magnitudes and directions of improvements are illustrated in Figure 4.  In 

Figure 4, circle size represents the total area of land required to supply the biorefinery 

under each scenario.  All other measures are again normalized to the monoculture 

baseline for each scenario one for comparison purposes.  In both scenarios, biorefinery 

cost falls (28% and 16% respectively) as the refinery draws from a smaller radius of 

cropland and employs less machinery per year for harvest and transportation at different 

harvest times.  Farm profit increases as farmers capitalize on both basepay as well as dual 

use revenue streams from corn grain when the price of corn is high.  Soil erosion falls in 

our optimized model, but not at the same rate as land use, indicating that farmers are 

substituting both the low erosion perennial crop switchgrass, as well as the more highly 

erosive sorghum, on the landscape for the initial corn monoculture over time.  



www.manaraa.com

')�

�

�

�

 Comparisons across the two scenarios are also revealing, and show a robustness 

of our model to varying parameters.  Recall that in scenario two, the dual use revenue 

stream is lowered and basepay is increased compared to scenario one, representing a 

situation where biofuels, and thereby biomass, are relatively more lucrative.  As intuition 

would suggest, this results in farmers planting more crops exclusively for biomass.  Our 

results show that as these higher yielding specialty crops are planted, the total number of 

acres harvested for the biorefinery decreases compared to the baseline and the scenario 

one optimization.  However, the overall costs to the biorefinery increase and overall farm 

profitability decreases compared to the scenario one optimization, as biorefineries pay out 

a higher base price and farmers draw less revenue from dual use.   Overall, when 

comparing a conventional monoculture baseline production plan with our proposed 

flexible optimization, we find significant improvements in each of the four performance 

measures, all on the order of 10% to 25%.  

6.  User Implementation 

At this point, we pause to consider how practitioners in this industry 

(biorenewables) could use our results and our model.  First, our results indicate that both 

dyad partners stand to realize cost of production and environmental benefits by engaging 

their own flexibilities (product or process) with their trading partner’ s corresponding 

flexibility.  In this context, both farmers and bioprocessors stand to benefit from linking 

biodiversity (product flexibility) with omnivorous technology (process flexibility). 

 Of course, in contemporary real-world application, farmers and biorefineries 

(suppliers and buyers) need not necessarily work together to jointly optimize a system.  

Each actor is likely to be more interested in maximizing only their own returns.  



www.manaraa.com

'��

�

�

�

However, our model need not be used by both parties in order to be useful.  In the short-

term, the model presented in this paper can be used by practitioners in the classic 

Stakleberg, game-theoretic sense: by one player to predict what his or her trading partner 

will do under different scenarios.  

 However, we are also envisioning a longer-term future, where the environmental 

and logistical cost benefits that result from linking biodiversity and process flexibility can 

be realized by either vertically integrated biorefineries, or by a potential third-party 

intermediary working in-between farmers and biorefineries.  The emerging 

biorenewables industry may be particularly suited to the former because of the large 

number of first-generation ethanol plans which are already owned by their surrounding 

farmers.  Equally plausible over the long-term are third-party logistics provider for the 

bioeconomy, who aggregate farmers’  feedstock and then sell it in large quantities to 

biorefineries owing to the significant portion of total costs that result from transportation 

and storage of biomass.  

7.  Implications and Limitations 

We present a way that advanced biofuels could be produced more cost effectively 

and with improved environmentally sustainability, while also reducing the amount of 

land taken out of food production or conservation.  Our two-stage approach respects that 

biorefiners and their farmer suppliers are separate profit maximizing actors and provides 

a framework for both parties to leverage the natural cost savings and environmental 

benefits of biodiversity interactively.  For the broader research community, our work 

suggests both the importance of considering multiple types of flexibility interfacing – as 

they are bound to do as both the biorenewable industry grows, and other types of 
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processors seek to minimize their environmental footprint – and, a novel, but practical, 

way to do it.  

Numerical experimentation calibrated to contemporary conditions in Iowa, USA 

suggest that this approach shows merit in a real-world context.  When comparing the 

conventional monoculture approach typically employed today to our optimized process 

flexible plans, costs of harvest and transport, as well as acres devoted to biofuels 

production  and soil erosion fell, while overall farm profitability rose – all with statistical 

significance and on the order of 10% to 25%.  

 This research is, however, still speculative in that advanced process flexible 

biofuel technologies are not yet commercially widespread.  (However, applicable projects 

do exist, including Dynamotive’ s fast pyrolysis bio-oil facility in Canada, the POET 

bioethanol facility in the U.S., the roughly 800 biomass to power plants operating in the 

European Economic area, as well as the 100 similar plants in the United States.)   We 

hope that further work will include deeper techno-economic analysis of the costs and 

benefits of the systems envisioned in this paper.  Also, as ongoing research makes more 

data available about water use and carbon sequestration resulting from alternative crops 

and crop sequences like the ones included in our model, even more environmental 

ramifications of improved production systems could be considered. 

Finally, we hope this work will motivate further work into studying the interface 

of different types of manufacturing flexibility in research and in practice.   As producers 

increasingly scrutinize the environmental and logistical costs of their systems across 

partner firm boundaries, we hope that our modeling approach will be applied to different 
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industries where different flexibilities interface and different supply chain-level 

environmental and social consequences are measured. 
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CHAPTER 5: GENERAL CONCLUSIONS AND FURTHER WORK 

 

General conclusions 

Sustainability has become an increasingly relevant issue for both supply chain 

management researchers, and practitioners.   In this dissertation, we attempted to offer a 

few new practical insights in to how sustainable supply chains could be designed.  These 

insights were first gleaned from casual observation of the differences between how 

resources flow and are stored in naturally evolved systems, and how resources are 

designed to flow and be stored in the modern supply chains that we design. 

 Chapter two laid out the conceptual beginnings of our research.  We presented a 

brief overview of the ecological benefits of diversity, and then tied the ecological notion 

of diversity to the operations research literature’ s notion of manufacturing flexibility.  

The logistical cost savings that arise from diverse/flexible supply chain designs were 

proposed to manifest in three ways: (1) lower expenditures on capital equipment; (2) 

smaller fixed investment in inventory facilities; and (3) lower transportation costs.  Each 

of these notions was presented, and then briefly argued, algebraically.  

 Chapter three began empirical testing. We built a simulation/optimization model 

of a bioeconomy instillation with parameters calibrated to the current environment in 

Iowa, USA.  We were especially interested in seeing how logistical costs responded to 

the addition of second, and third inputs (crops) to the process flexible system.  We found 

evidence for meaningful logistical savings (2%-38%), as well as evidence supporting the 

first two propositions laid out in chapter two.  In most cases, adding multiple inputs 

reduced both fixed expenditures on logistical equipment and inventory facilities.  These 
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savings were found to be most pronounced in high-yield, high-yield-variability treatment 

scenarios. 

 Chapter 4 provided further empirical testing, and also dealt with the reality of the 

dyadic product/process flexible supply chain.  A new simulation/optimization model was 

built in a different software environment than in chapter three.   This more sophisticated 

numerical experiment allowed product flexible suppliers and process flexible buyers to 

interact, iteratively over time by using elements of game theory and a series of integrated 

and sequenced linear programs.  We found similar logistical cost savings to what we did 

in chapter three’ s experiment (10%-25%), as well as evidence for chapter’ s two’ s 

propositions one and three. 

Further work 

 This work was obviously limited by both our own imaginations, and our 

resources.  We hope that further work will find new ways to contribute to both.  Firstly, 

in terms of resources, data concerning different input’ s, and mixes of inputs’  

environmental measures (like C02 emissions, or water use) could be included in further 

analysis of the simulation/optimizations that we presented in chapters three and four.  

 But, the bigger opportunity is likely in terms of imagination.  We have 

empirically tested these ideas in the biorenewables context.  Surely, there are more 

industries (some of which are described in chapter two) where this work could be 

replicated to find boundary conditions, and new applications. 

 But, perhaps the biggest opportunity for further work comes from taking more 

supply chain design cues from the natural environment.  In this, we feel we have only 

begun to draw lessons from the intersection of ecology and supply chain design.  Surely, 
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at the confluence of these historically disparate research streams are other new design 

principles and propositions to be uncovered and tested similar to the way we did in this 

work.   
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